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Abstract

Non-cooperative and cooperative games with a very large number of players remain
generally intractable when the number of players increases. Introduced by Lasry
and Lions (2007) and Huang et al. (2006), Mean Field Games (MFGs) rely on a
mean-field approximation to allow the number of players to grow to infinity. In
Mean-field reinforcement learning, When the state space is finite but very large,
storing the population distribution in a tabular way for every state and computing
the evolution of this distribution in an exact way is prohibitive in terms of memory
and computational time. In continuous spaces, representing and updating the dis-
tribution is even more challenging, even if it is just for the purpose of implementing
the RL environment and not to use it as an input to the policies. In this case, one
needs to rely on approximations. This research aims to propose a model-based rein-
forcement learning algorithm, GD-MFRL that efficiently represents the distribution
using function approximation in a two-part generative and discriminative setting;
(i) one part learns to generate distributions by trial and error, and (ii) the other
part tries to evaluate these distributions. The definition of such a framework re-
quires answering several challenging research questions, including: How to evaluate
the transfer quality in a Multiagent scenario?

1 Introduction

In Observing the mean field, we assume that the agent does not observe the distribution, or at
least does not exploit this information to learn the equilibrium policy. Although this is the most
common approach in the RL and MFGs literature, the question of learning population-dependent
policies arises quite naturally since one could expect that agents learn how to react to the current
distribution they observe. This is usual in MARL, see e.g. Yang et al. (2018) who consider Q-
functions depending on the actions of all the other players. In MFGs, we can expect that, by learning
a population-dependent policy, the agent will be able to generalize, i.e., to behave (approximately)
optimally even for population configurations that have not been encountered during training. The
concept of a value function depending on the population distribution is connected to the so-called
Master equation in MFGs. Introduced by Lions (2012) in continuous MFGs (continuous time,
continuous state, and action spaces), this partial differential equation (PDE) corresponds to the
limit of systems of Hamilton-Jacobi-Bellman PDEs characterizing Nash equilibria in symmetric N-
player games. We refer the interested reader to e.g. Bensoussan et al. (2015); and Cardaliaguet et al.
(2019) for more details on this topic. With this approach, value functions and policies take as input a
distribution, which is a high-dimensional object. As a consequence, they are much more challenging
to approximate than population-independent policies. Perrin et al. (2022), introduced the concept
of master policies, which are population-dependent policies allowing to recover an equilibrium policy
for any observed population distribution. They proposed to approximately compute master policies
by a combination of Fictitious play, DRL, and suitable randomization of the initial distribution. Wu
et al. (2024) extended the approach to non-stationary master policies and proposed an adaptation
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of the Munchausen OMD algorithm introduced by Lauriere et al., 2022 to compute policies taking
the distribution as an input.

In distribution estimation, When the state space is finite but very large, storing the population
distribution in a tabular way for every state and computing the evolution of this distribution in
an exact way is prohibitive in terms of memory and computational time. In continuous spaces,
representing and updating the distribution is even more challenging, even if it is just for the pur-
pose of implementing the RL environment and not to use it as an input to the policies. In this
case, one needs to rely on approximations. As already mentioned, a possible method consists of
using an empirical distribution, whose evolution can be implemented by Monte Carlo samples of
an interacting agent system. This amounts to using a finite population of agents to simulate the
environment. For example, in linear-quadratic MFGs the interactions are only through the mean,
which can be estimated even using a single agent, see Angiuli et al., 2022c,b in the stationary setting
and Angiuli et al., 2021; uz Zaman et al., 2020; Miehling et al., 2022; uz Zaman et al., 2023a in the
finite-horizon setting. However, it should be noted that even if a finite number of agents is used in
the environment, this approach does not directly reduce the problem to a MARL problem because
the goal is still to learn the equilibrium policy for the MFG instead of the finite-agent equilibrium
policy. Another approach consists of representing efficiently the distribution using function approx-
imation. This raises the question of the choice of parameterization and the training method for the
parameters. This approach can be implemented in a model-free way using Monte Carlo samples,
which is particularly suitable for spaces that are too large to be explored in an exhaustive fashion.

2 Research Goals and Expected Contributions

This research aims to propose a model-based RL algorithm to allow distribution approximation in
multi-agent reinforcement Learning, in a generative-discriminative setting. Specifying such a method
requires the definition of (i) A model that learns the distributions and tries to consistently generate
approximations; (ii) The second discriminative part that tries to understand and evaluate these
approximations; and (iii) How to define knowledge interaction framework between the generator
and discriminator. The agent extracts knowledge from trial and error and previously solved tasks to
accelerate the learning of the distribution. The learning of this distribution can then be abstracted
and added to the knowledge base.

3 Background and Related Work

3.1 Mean Field Games

An MFG describes a game for a continuum of identical agents and is fully characterized by the
dynamics and the payoff function of a representative agent. More precisely, denoting by µt the
state distribution of the population, and by ξt ∈ Rl and αt ∈ Rk the state and the control of an
infinitesimal agent, the dynamics of the infinitesimal agent is given by

ξt+1 = ξt + b(ξt, µt, αt) + σϵt+1(1)

where b : Rl×Rk×ρRl −→ Rl is a drift (or transition) function, σ is a l× l matrix and ϵt+1 is a noise
term taking values in Rl. We assume that the sequence of noises ϵt(t ≥ 0) is i.i.d. (e.g. Gaussian).
The objective of each infinitesimal agent is to maximize its total expected payoff, given a flow of
distributions µ = µt(t ≥ 0) and a strategy α (i.e., a stochastic process adapted to the filtration
generated by ϵt(t ≥ 0) as: Jµ(α) = Eξtαt[Σt ≥ 0γtϕ(ξt, µt, αt)], where γ ∈ (0, 1) is a discount factor
and ϕRl ×Rk × ρRl −→ Rl is an instantaneous payoff function. Since this payoff depends on the
population’s state distribution, and since the other agents would also aim to maximize their payoff,
a natural approach is to generalize the notion of Nash equilibrium to this framework. A mean-field
(Nash) equilibrium is defined as a pair (µ̂, α̂ = (µ̂t,
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1. α̂ maximizes α −→ Jµ̂(α); 2. for every t ≥ 0, µ̂t is the distribution of ξt when it follows the
dynamics (1) with (αt, µt) replaced by

Finding a mean field equilibrium thus amounts to finding a fixed point in the space of (flows of)
probability distributions. The existence of equilibria can be proven through classical fixed point
theorems (Carmona and Delarue, 2018). In most mean field games considered in the literature, the
equilibrium is unique, which can be proved using either a strict contraction argument or the so-
called Lasry-Lions monotonicity condition (Lasry and Lions, 2007). Computing solutions to MFGs
is a challenging task, even when the state is in a small dimension, due to the coupling between the
optimality and the consistency conditions. This coupling typically implies that one needs to solve
a forward-backward system where the forward equation describes the evolution of the distribution
and the backward equation characterizes the optimal control. One can not be solved prior to the
other one, which leads to numerical difficulties.

3.2 Reinforcement Learning

The Reinforcement Learning (RL) paradigm is the machine learning answer to the optimal control
problem. It aims at learning an optimal policy for an agent that interacts in an environment
composed of states, by performing actions. Formally, the problem is framed under the Markov
Decision Processes (MDP) framework. An MDP is a tuple (S, A, p, r, γ) where S is a state space, A
is an action space, p : S ×A −→ P (S) is a transition kernel, r : S ×A −→ R is a reward function and
γ is a discount factor (see Eq. (2)). Using action a when the current state is s leads to a new state
distributed according to P(s, a) and produces a reward R(s, a). A policy π : S −→ P (A), s −→ π(ů|s)
provides a distribution over actions for each state RL aims at learning a policy π∗ which maximizes
the total return defined as the expected (Discounted) the sum of future rewards:

R(π) = Eat,s t+1[Σ(t ≥ 0)γt(st, at)](2)

with at ∼ π(ů|st) and st+1p(ů|st, at). Note that if the dynamics (p and r) are known to the agent,
the problem can be solved using e.g. dynamic programming. Most of the time, these quantities are
unknown and RL is required. A plethora of algorithms exist to address the RL problem. Yet, we
need to focus on methods that allow continuous action spaces as we want to control accelerations.
One category of such algorithms is based on the Policy Gradient (PG) theorem (Sutton et al., 1999)
and makes use of the gradient ascent principle: π ←− π + α(π)/∂π, where α is a learning rate. Yet,
PG methods are known to be high-variance because they use Monte Carlo rollouts to estimate the
gradient. A vast literature thus addresses the variance reduction problem. Most of the time, it
involves a hybrid architecture, namely Actor-Critic, which relies on both a representation of the
policy and of the so-called state-action value function (s, a) −→ Qπ(s, a). Qπ(s, a) is the total return
conditioned on starting in state s and using action a before using policy π for subsequent time steps.
It can be estimated by bootstrapping, using the Markov property, through the Bellman equations.
Most recent implementations rely on deep neural networks to approximate π and Q (e.g. (Haarnoja
et al., 2018)).

4 Partial Results

In order to define a representation that allows distribution approximation, we propose a GD-MFRL
extension to MAS, called Generative Discriminative Mean-Field Reinforcement Learning. GD-
MFRL is inspired by the insight that approximation can be seen and modeled as a game in the
MAS; hence, the environment is described by a set of a generator and a discriminator, in which
the former can generate approximations and the latter enhances these approximations. While GD-
MFRL enables distribution approximation by trial and error, eliminating the need for recalibration
to have neural networks satisfying that the model is calibrated w.r.t f.
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5 Next Steps

GD-MFRL is a promising model that allows approximation of the distribution. Now, the next step
in our research is to define how the method will iteratively adjust the interactions between the
generative and discriminative components until they reach a consensus on a value that accurately
reflects reality and aligns with their initial beliefs. Abstract policies have been successfully used,
thus we now plan to build abstract policies based on GD-MFRL. We still need to specify a mapping
method to find correspondences between generators and discriminators in different domains, and
how the transfer of knowledge among agents may be executed with abstract policies.
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