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Abstract

Reward-free RL is independently developed in the unconstrained literature, which1

learns the transition dynamics without using the reward information and is thus2

naturally capable of addressing RL with multiple objectives under the common3

dynamics. This paper proposes a new framework for the reward-free RL setting4

with function approximation i.e. the adversarial linear mixture MDPs. As Jin, et al.5

(2020). We partition this setting into an exploration phase and a planning phase.6

During the exploration phase, the agent first collects trajectories from an MDP7

M without a pre-specified reward function. Using the Graph Neural Networks8

(GNNs) to store the significant states in dataset D instead of all states, each with a9

heuristic weight. In the planning phase, it is tasked with computing near-optimal10

policies under M for a collection of given reward functions. The agent generalizes11

previously learned information using the linear mixture MDPs that allows it to12

approximate the policy given an arbitrary reward function.13

1 Introduction14

In reinforcement learning (RL), an agent repeatedly interacts with an unknown environment with the15

goal of maximizing its cumulative reward. To do so, the agent must engage in exploration, learning16

to visit states to investigate whether they hold high rewards.17

Exploration is widely regarded as the most significant challenge in RL, because the agent may have18

to take precise sequences of actions to reach states with high reward. Here, simple randomized19

exploration strategies provably fail: for example, a random walk can take exponential time to reach20

the corner of the environment where the agent can accumulate high rewards (Li, 2012). While21

reinforcement learning has seen a tremendous surge of recent research activity, essentially all of22

the standard algorithms deployed in practice employ simple randomization or its variants, and23

consequently incur extremely high sample complexity.24

In this extended abstract paper, we aim to develop an end-to-end instantiation of this proposal. To25

this end we ask: How can we generalize the concepts of significant states and coverage guarantees?26

And how can we develop such an agent that can generalize enough?27

1.1 Notations28

In the reward-free setting, we would like to design algorithms that efficiently explore the state space29

without the guidance of reward information. Over the course of K episodes, the agent collects a30

dataset of visited states, actions, and transitions D = s
(
hk), a

(
hk)(k, h) ∈ [k]× [H], which is the31

outcome of the exploration phase.32

Graph Neural Networks Graph neural networks (GNN) are a class of neural networks that operate33

directly on graph-structured data. A wide variety of graph neural network architectures have been34
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proposed. These range from simple graphs, to directed graphs, to graphs that contain information,35

up to convolutional graphs. The graph G = (N,E) is defined as having nodes ni ∈ N and directed36

edges eij ∈ E from node nj to ni. Both – the nodes and the edges – contain additional information.37

The node value is denoted as hi for the i-th node and the edge value as eij connecting the i-th with38

the j-th node. In each layer of the GNN, a dense node neural network layer is applied per node and a39

dense edge neural network layer per edge. Each GNN layer has three computation steps: First, the40

next edge values eikj
+1 are computed using the current edge values eikj , the from-node values hk

i and41

the to-node values hk
j . These values are concatenated and passed into a dense neural network layer42

fk
x (.) that is parameterized by X. This can be represented as:43

ei
k
j
+1 = fk

x ([h
k
i , ei

k
j , h

k
j ]) (1)

Linear Mixture MDPs. We focus on a special class of MDPs named linear mixture MDPs (Ayoub44

et al., 2020; Cai et al., 2020; Zhou et al., 2021; He et al., 2022; Li et al., 2023), where the transition45

kernel is linear in a known feature mapping ϕ : SAS → Rd with the following definition.46

Definition 1 (Linear Mixture MDPs). An MDP instance M = (S,A,H, Phh=1
H), lkk=1

K) is called47

an inhomogeneous, episodic B-bounded linear mixture MDP if there exists a known feature mapping48

ϕ(s′|s, a) : SAS → Rd with ϕ(s′|s, a)21 and unknown vectors ϕ∗
hh=

H
1 ∈ Rd with ϕ∗

h2B such that49

for all (s, a, s′) ∈ SAS and h ∈ [H], it holds that Ph(s
′|s, a) =< ϕ(s′|s, a), ϕ∗

h >50

2 Approximate MDP Solvers51

Approximate MDP solvers aim to find a near-optimal policy when the exact transition matrix P52

and reward r are known. The simplest way to achieve this is by the Value Iteration (VI) algorithm,53

which solves the Bellman optimality equation in a dynamical programming fashion. Then the greedy54

policy induced by the result Q* gives precisely the optimal policy without error. Another popular55

approach frequently used in practice is the Natural Policy Gradient (NPG) algorithm. In each iteration,56

the algorithm first evaluates the value of policy π(t) using Bellman equation. Then it updates the57

policy by first scaling it with the exponential of learning times value Qπ(t), and then performs a58

normalization. For completeness, we provide its guarantee here, which resembles the infinite horizon59

analysis in (Agarwal et al., 2019)60
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