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Abstract

Opponent modeling (OM) is the ability to use prior knowledge and observations in1

order to predict the behavior of an opponent. On the other hand, there has been2

tremendous research at the intersection of foundation models (FM) and decision-3

making which holds tremendous promise for creating powerful new systems that4

can interact effectively across a diverse range of applications. This paper examines5

the integration of foundation models with opponent modeling and tackles one6

of the open problems in FMs for decision-making (i) leveraging and collecting7

decision-making datasets DRL; specifically datasets for the opponent modeling8

systems in the large-scale human demonstration, which is hard to scale., and (ii)9

proposing a new framework for opponent modeling: Using FMs as a guiding tool10

that enhances the agent capabilities in prediction. The goal is to train a policy11

from a given environment without reward signals. I propose using foundation12

models (FMs), i.e., large language models (LLMs) and vision-language models13

(VLMs), to achieve this goal. The LLM generates instructions that help the agent14

to learn features of the behavior of the opponent and ultimately enables the agent15

to exploit the opponent’s strategy in the current environment d(s0). In contrast, the16

VLM works as a policy-guided learning. The internet-scale knowledge capacity of17

recent FMs enables automating impractical human effort in the RL framework [1].18

Existing works query pre-trained LLMs for tasks to learn [2], language-level plans19

[3], and language labels [4]; or use pre-trained VLMs to obtain visual feedback20

[5]. ELLM [6] uses LLMs to propose new tasks for agents to learn. A line of work21

[7] specifically focuses on using FMs for the Minecraft domain, while none of22

the works integrate pre-trained LLM and VLM for opponent modeling. Inspired23

by [8], this work is mainly motivated by two questions: How to leverage and24

construct datasets for decision-making DRL i.e. FMs and OM? And can we teach25

RL agents to predict opponents’ actions and strategies accurately in opponent26

modeling environments without human supervision?27

1 Introduction28

In a Partially-Observable Stochastic Game (POSG) [9] for a basic formalization of the competitive29

environment. A POSG is defined by a tuple <I, S,Oi
i, A, T,Rii,Ωii>, where I = 1, 2, . . . , N is30

the set of agents. S is the state space. Oi is the observation space of agent i. A = A1 ×A2 × ×AN31

is the joint action space. T : S ×A× S → [0, 1] denotes the transition dynamics, which defines the32

probability distribution on the next state given the previous state and the joint action. Ri : S×A×S →33

R denotes the reward function of agent i. Ωi : S ×A×Oi → [0, 1] denotes the agent i’s observation34

function, which defines the probability distribution over its possible next observation given the35

previous state and the joint action.36
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In this study, I utilize 1 to denote the controlled agent and 1 to denote the opponent and focus on37

modeling one opponent. I assume that the opponent’s policy originates from a set of fixed policies38

Π = {π1,k(a1|o1)}k=1,2 ,...k , which are obtained by the scripts or RL algorithms pre-training.39

1.1 Notations40

The first step is to generate a set of imagined task instructions that are useful for learning behaviors.41

Given the proposed set of N-numbers of task instructions {δ(i)}i=1 . . .N and their corresponding42

initial states, our goal is to train a multi-task policy π(a|s, δ) that follows the instructions. To43

accomplish this, VLM can be used as a policy-guided learning, which trains a multi-task policy in44

the training environment using the obtained instructions. The policy is trained to follow the given45

instruction by maximizing the VLM “alignment score” between the current observation and the46

instruction as its reward. Specifically, the reward is defined by:47

rt = r(otH :t, δ) =
ϕv(otH :t)

TϕT (δ)

|ϕv(otH :t)| · |ϕT (δ)|
(1)

where ot is the visual observation of time step t with otH :t implying the sequence of observations48

with size of H, | · | refers to L2-norm of a vector, ϕT and ϕv are the text and video encoder of the49

VLM, δ is the language instruction, and H is the length of video that the VLM takes.50

Σi=1 . . .N Eot∼π, ρ, P [Σtr̂(otH :t)δi)] (2)
.51

2 Opponent Modeling52

Assuming that the interaction between the controlled agent and the opponent policy π
1,k generates53

their respective trajectories, denoted as τ1,k = (o10
,k, a10

,k, r10
,k, o11

,k, a11
,k, r11

,k, . . .) ∈− 1,k and54

τ
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. The resultant dataset is thus denoted as Dk =55

τ1,k, τ
1,k

. Within the context of offline learning, we presume the availability of the dataset Dof f =56

Dk
k=1,2,K̇ . Specifically, τ1,k is acquired through interactions with π−1,k while employing its57

approximate best response policy π1,k,∗, usually with certain noise.58

The objective of OM is to use Dof f to pre-train an opponent-aware adaptive controlled agent policy59

Mθ(a
1|o1;D) and deploy M into a new environment with an unknown test opponent policy set Πtestt,60

such that the controlled agent achieves the maximum expected return (i.e., cumulative reward):61

maxE−
π

1 ∼ Πtest,Dof f , T,Ω[Σt=0 . . .∞ R1
t |a1t ∼ Mθ.π

−1] (3)

D is the opponent’s information data, sampled from Doff during offline pre-training and must be62

collected during deployment.63

3 How to Leverage or Collect Datasets64

One key challenge in applying foundation models to decision-making lies in the dataset gap: the65

broad datasets from vision and language D and the task-specific interactive datasets DRL can be66

of distinct modalities and structures. For instance, when D consists of videos, it generally does not67

contain explicit action labels indicating the cause-effect relationship between different frames, nor68

does it contain explicit reward labels indicating which videos are better than others, whereas actions69

and rewards are key components of DRL. Despite this gap, broad video and text data can be made70

more task-specific through post-processing (D → DRL), leveraging hindsight relabeling of actions71

and rewards (e.g., using human feedback). Meanwhile, decision-making datasets can be made more72

broad and general (D → DRL) by combining a wide range of tasks-specific datasets (e.g., Gato).73

Below we provide a list of examples of D and DRL that can be used for research in foundation74

models for decision-making, and propose additional approaches for bridging the gap between D and75

DRL. In the manuscript of [10] proposed bridging D and DRL. To enable better datasets tailored76

for decision-making, one can either increase the scale of DRL. by large-scale logging and merging77
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task-specific sets of interactive data or by relabeling D with action and reward information. One78

could also consider augmenting DRL. with metadata, such as informational and instructional texts79

and videos.80
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