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Abstract

Decisions often require balancing immediate gratification against long-term benefits. In1
Reinforcement Learning (RL), this balancing act is influenced by temporal discounting,2
which quantifies the devaluation of future rewards. Prior research indicates that human3
decision-making aligns more closely with hyperbolic discounting than the conventional4
exponential discounting used in RL. As artificial agents become more advanced and per-5
vasive, particularly in multi-agent settings alongside humans, the need for appropriate6
discounting models becomes critical. Although hyperbolic discounting has been pro-7
posed for single-agent learning along with multi-agent reinforcement learning (MARL),8
it is still underexplored in more advanced settings such as the hierarchical reinforcement9
learning (HRL). We introduce and formulate hyperbolic discounting in HRL, establish-10
ing theoretical and practical foundations across various frameworks, including option11
critic and Feudal Networks methods. We evaluate hyperbolic discounting on diverse12
tasks, comparing it to the exponential discounting baseline. Our results show that hy-13
perbolic discounting achieves higher returns in 50 of scenarios and performs on par14
with exponential discounting in 95 of tasks, with significant improvements in sparse re-15
ward and coordination-intensive environments. This work opens new avenues for robust16
decision-making processes in the development of advanced RL systems.17

1 Introduction18

Hierarchical reinforcement learning (HRL) extends the capabilities of RL, by proposing a divide-19
and-conquer approach. In this approach, the complex, difficult to solve problem, is abstracted into20
multiple smaller problems. These abstracted problems are generally easier to solve and their so-21
lutions can be reused to solve different problems. This approach has previously been successfully22
utilized (Georgievski, I.; Aiello, M, 2015) to speed up many offline planning algorithms where23
the dynamics of the environment are known in advance. This compositionality has been identi-24
fied (Sacerdoti, E.D., 1973) as one of the key building blocks of artificial intelligence. Humans25
intuitively harness compositionality in order to tackle complex problems. Efficiently using such ab-26
stractions has proven to make significant contributions towards solving various important open RL27
problems such as reward-function specification, exploration, sample efficiency, transfer learning,28
lifelong learning and interpretability.29

In reinforcement learning (RL), the goal of maximizing rewards is central to learning intelligent30
behavior (Silver et al., 2021). This involves prioritizing reward maximization to generate complex31
behaviors without specialized problem formulations. The treatment of the reward signal is crucial32
in developing intelligent agents. Human and animal behavior often shows a preference for im-33
mediate rewards over delayed ones (O’Donoghue Rabin, 2000), rooted in temporal discounting,34
where the value of rewards diminishes over time. In RL, discounting influences the time-preference35
for rewards, enforces shortest path strategies, and represents the probability of termination (Puter-36
man, 2014). Discounting plays a pivotal role, particularly in infinite horizon objectives, to ensure37
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well-defined long-term reward goals (Sutton Barto, 2018). Rewards are typically discounted ex-38
ponentially, meaning that a reward obtained t time steps in the future is discounted by a factor of39
γt(Bellman, 1957b; Sutton Barto, 1998). This approach establishes a fixed learning horizon for40
the agent: a smaller γ value prioritizes short-term rewards, while a larger γ value emphasizes long-41
term rewards. However, human and animal behavior often follows hyperbolic discounting patterns42
(Mazur, 1987), characterized by the hyperbolic function 1

1+kt , where k > 0 represents the hyper-43
bolic discounting rate. Unlike exponential models, hyperbolic discounting accounts for preference44
reversal over time (Green et al., 1994) and offers better alignment with decision-making scenarios45
involving multiple reward variables, such as delay length, reward magnitude, and probability (Green46
Myerson, 2004).47

In this work, we posit that incorporating hyperbolic discounting into HRL can enhance agents’48
adaptability to diverse partners by aligning their decision-making with human temporal preferences.49
This can improve the robustness and flexibility of HRL systems and foster more effective human-AI50
collaboration by making agents’ behavior more predictable and intuitive. We explore hyperbolic51
discounting for Hierarchical learning, focusing on its impact on agent interactions. We compare52
hyperbolic discounting against exponential discounting as a baseline, noting our agent-centric per-53
spective. Our findings reveal that hyperbolic discounting consistently outperforms exponential dis-54
counting, yielding higher returns, especially in environments with sparse rewards and the need for55
intricate coordination. These improvements are evident across various learning modalities and are56
particularly pronounced in the grid-world environments. The main contributions of this work are:57

• We establish theoretical and empirical foundations for incorporating hyperbolic discounting across58
two HRL algorithms, covering option critic and Feudal networks methods.59

• We propose and conduct a comprehensive comparative analysis of two hyperbolic discounting60
schemes against the traditional exponential model: one computes a hyperbolic value estimate,61
and the other averages multiple value estimates using normally distributed exponential discount62
factors. We perform empirical evaluations across two HRL tasks, demonstrating the advantages63
of hyperbolic discounting in various settings.64

2 Preliminaries65

2.1 Survival and Hazard Rate66

We start by motivating against the use of a single, fixed discount factor. In survival analysis (Cox,67
1972), the primary focus is on analyzing and modeling the time until specific events occur, such68
as death. Sozou (1998) extend this by formalizing time preferences, showing that future rewards69
should be discounted according to the probability that an agent will not survive to collect them due70
to encountered risks or hazards. This survival probability is defined as s(t) = P (agent is alive|at71
time t). The present value of a future reward rt is discounted by s(t), i.e., v(rt) = s(t)rt. If s(t) =72
1, the reward is not discounted. The hazard rate, h(t), is defined as the negative rate of change of73
the log-survival probability, h(t) = −dt

d lns(t). For a constant hazard rate λ, the survival rate is74
s(t) = e, leading to an exponential discount function s(t) = γt with γ = eλ. Increasing hazard75
leads to myopic behavior (as λ → ∞, γ → 0), and decreasing hazard leads to strategic behavior (as76
λ → 0, γ → 1). When the hazard rate is uncertain, the survival rate is computed by integrating over77
a prior distribution p(λ), s(t) =. For an exponential prior p(λ) = 1

kexp(λ/k), the expected survival78
rate becomes hyperbolic, s(t) = 1

1+kt ≡ Γk(t), where Γk(t) is the hyperbolic discount function.79
Different priors over the hazard rate yield different discount functions (Sozou, 1998).80

2.2 Hazardous Markov Games81

For the hierarchical setting, we formalize our problem based on the Markov Game (Littman, 1994),82
generalized to include partial observability. Moreover, to consider distributions over the hazard83
rate, and use non-exponential discounting functions, we remove the discount factor γ and introduce84
two additions; a hazard distribution, and a general discount function. Concretely, the Hazardous85
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Markov Game (HMG) for N agents is defined by the tuple G = <N,S,Oii∈N , Aii∈N ,Ω, P, r>,86
with agents i ∈ N = 1, ..., N , state space S, joint observation space O = O1 × ... × ON , and87
joint action space A = A1 × ... × AN . Each agent i only perceives local observations oi ∈ Oi,88
which depend on the state and joint action via the observation function Ω : S × A → ∆(O). The89
transition function P : S × A → ∆(S) returns a distribution over states given a state and a joint90
action A = (a1, a2, ..., aN ). r : S ×A → R is the shared reward function, with r(s, a1, a2, ..., aN )91
representing the reward received by all agents after taking actions a1, a2, ..., aN in state s. H is the92
hazard distribution from which a hazard rate λ ∈ [0,∞) is sampled at the beginning of each episode.93
Finally, instead of γ, we consider d(t), which is a general discount function, of which exponential94
and hyperbolic will be special cases. The objective is to jointly optimize the discounted cumulative95
reward G = EEst,At [

∑∞
t d(t)rt] where At is the joint action at timestep t and λ ∼ H .96

3 Hyperbolic Discounting in HRL97

We now discuss the theoretical foundations that can allow us to derive temporal-difference learning98
solutions while using hyperbolic discounting.99

3.1 Value-Based Methods100

We first show how exponentially discounted Q-values can be used to derive hyperbolic discounted101
Q-values, building on prior work (Fedus et al., 2019). The Bellman equation (Bellman, 1957a) is102
written as:103

Qγt

π (s, a) = Eπ,p[R(s, a) + γQπ(s
′, a′] (1)

where expectation Eπ;P denotes sampling a ∼ π(|s), s′ ∼ P (|s; a), and a0 ∼ π(|s0).104

We start by estimating the value function where rewards are discounted hyperbolically instead of the105
common exponential scheme. We refer to the hyperbolic Q-values as QΓ

π:106

QΓk
π (s, a) = Eπ[ΣΓk(t)R(st, at)|s, a] (2)

We establish a connection between hyperbolic QΓk
π -values and values obtained through standard107

Q-learning. The hyperbolic discount Γk can be represented as the integral of a specific function f(γ,108
t) for γ = [0, 1):109 ∫ 1

γ=0

γktdγ =
1

1 + kt
= Γk(t) (3)

The integration of the function f(γ, t) = γkt across the domain γ ∈ [0, 1) results in the hyperbolic110
discount factor Γk(t). This integration, incorporating an infinite set of exponential discount factors111
γ, reveals that Γk(t) functions as the standard exponential discount factor, linking the concept to112
traditional Q-learning. This approach suggests that by aggregating an infinite collection of γ val-113
ues, hyperbolic discounts can be derived for each respective time step t. For a hyperbolic discount114
function Γk(t) , the hyperbolic Q-values can be written as:115

QΓπ(s,a) = Eπ[ΣΓk(t)R(st, at)|s, a] (4)

= Eπ[Σt(

∫ 1

γ=0

γkt

dγ)R(st, at)|s, a] (5)

=

∫ 1

γ=0

Eπ[ΣtR(st, at)(Γ
k)t|s, a]dγ (6)

=

∫ 1

γ=0

Q(γkt)
π (s, a)dγ (7)
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4 Experiments116

4.1 methods117

We introduce two novel discounting methods: hyperbolic discounting and averaged horizon dis-118
counting. The latter is a special case of the former, where the agent learns over multiple discount119
factors γ.120

Hyperbolic Discounting Following Fedus et al. (2019), we implement hyperbolic discounting in121
HRL using a multi-headed value output structure, where each head corresponds to a distinct discount122
factor. We approximate the hyperbolic value function by integrating multiple value estimates via a123
Riemann sum:124

QΓ
π(s, a) =

∑
γi∈G

(γi+1 − γi)w(γi)Q
γi

π (s, a) (8)

Here, G = [γ0, γ1, ..., γn] is the set of discount factors, with Qγi denoting the Q-values for each γi.125

4.2 Setup126

We evaluate the effectiveness of the proposed hyperbolic method across two HRL algorithms:127
option-critic and Feudal networks. These methods are tested in two distinct HRL environments:128
one low-dimensional state-space environment (grid-world) and one high-dimensional state-space129
environment (Atari games). Each environment presents unique challenges to assess the scalability130
and the generalization capabilities of the algorithms.131

4.3 Results132

We present results for the two proposed discounting methods and the baseline for each of the two133
HRL algorithms across four benchmarks, comparing their performance. We show results for four-134
room grid world and Atari games. Figure 1 and Figure 2 show the comparison of hyperbolic against135
exponential discounting for the two methods across four-room grid world, while Figure 3 shows136
the the hyperbolic discounting using Feudal networks in Atari Pong games. Generally, performance137
differences are noticeable in four-room and Atari, with one of the proposed variants performing138
better, while performance differences in option critic network are minimal.139

5 Discussion140

Please see Appendix A for related works. We introduce hyperbolic discounting for HRL settings.141
Our experiments revealed improvements in performance, stability, and sample efficiency with non142
exponential discounting methods, which outperformed traditional exponential discounting on more143
than 50 of the tasks. Hyperbolic discounting emerged as the most reliable method, showing smaller144
standard deviations and enhanced performance across various algorithms. The structural differ-145
ences in algorithms influenced the impact of non-exponential discounting, with some benefiting146
more than others. Future research could explore ensemble methods to further improve non expo-147
nential discounting functions. These findings highlight the potential of non-exponential discounting148
in reinforcement learning, promoting more efficient and effective decision-making in real-world149
applications.150
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151

Figure 1: Four-room grid world Results: Proposed hyperbolic discounting policies

152

Figure 2: Four-room grid world Results: Proposed exponential discounting policies

153

Figure 3: Hyperbolic discounting using Feudal networks tested in Pong Atari games

There are avenues of future work. The results of Bowling et al. (2023) address scenarios with154
a constant exponential discount factor, not considering hyperbolic discounting. Since hyperbolic155
discounting, as approximated by Fedus et al. (2019) and extended here, uses multiple constant156
exponential discount factors, further theoretical analysis would be beneficial, such as Pitis (2023).157
Moreover, it would be interesting to study effects of reward discounting in human-AI teams where158
long-term decision trade-offs are involved.159
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Appendix191

A Related Work192
We focus on the aspect of discounting preferences in social settings which involves more than one193
individual (we refer the reader to Fedus et al. (2019) for an in depth review of discounting in194
individual human preferences). In controlled studies, discounting future rewards has been mostly195
studied as a personal preference parameter, where each individual is given a questionnaire to evaluate196
their valuation of future rewards. These studies show how decisions involving immediate versus197
long-term benefits are influenced by temporal discounting—where individuals place less value on198
delayed rewards. Recent studies have expanded this concept to decisions made in group settings,199
like dyads or small groups, revealing that direct interactions can lead to aligned preferences among200
participants, making them more similar in patience level over time. Bixter Luhmann (2021) study201
whether such social influences could also be indirect, such as through mutual acquaintances within202
a group. Focusing on hypothetical monetary rewards, the research involved groups of three where203
one member’s decision preferences before collaboration were linked to another’s preferences after204
collaborating with an intermediary. Findings highlighted that decision-making tendencies regarding205
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time can spread through a social network’s connections, showing the presence of indirect social206
influence in a controlled setting.207
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