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Abstract

Exploration is widely regarded as one of the most challenging aspects of reinforce-1

ment learning (RL). We consider the reward-free RL problem, which operates in2

two phases: an exploration phase, where the agent gathers exploration trajectories3

over episodes irrespective of any predetermined reward function, and a subsequent4

planning phase, where a reward function is introduced. The agent then utilizes the5

episodes from the exploration phase to calculate a near-optimal policy. Existing6

algorithms and sample complexities for reward-free RL are limited to tabular,7

linear, or very smooth function approximations, leaving the problem largely open8

for more general cases. We consider deep-learning-based function approximations,9

i.e. DQNs, and propose an algorithm based on internal feedback and the agent’s10

own confidence and self-certainty in a graph MDP.11

1 Introduction12

In reinforcement learning (RL), an agent repeatedly interacts with an unknown environment with the13

goal of maximizing its cumulative reward. To do so, the agent must engage in exploration, learning14

to visit states in order to investigate whether they hold high rewards. RL policies using complex15

function approximations have been empirically effective in various fields including reward-free RL.16

These RL policies must learn the transition model, either directly or indirectly, necessitating efficient17

exploration.18

Sophisticated exploration strategies which deliberately incentivize the agent to visit new states19

are provably sample-efficient (c.f., Kearns Singh (2002); Brafman Tennenholtz (2002); Azar et20

al. (2017); Dann et al. (2017); Jin et al. (2018)), with recent work providing a nearly-complete21

theoretical understanding for maximizing a single prespecified reward function (Dann Brunskill,22

2015; Azar et al., 2017; Zanette Brunskill, 2019; Simchowitz Jamieson, 2019). In practice, however,23

reward functions are often iteratively engineered to encourage desired behavior via trial and error (e.g.24

in constrained RL formulations (Altman, 1999; Achiam et al., 2017; Tessler et al., 2018; Miryoosefi25

et al., 2019)). In such cases, repeatedly invoking the same reinforcement learning algorithm with26

different reward functions can be quite sample inefficient.27

One solution to avoid excessive data collection in such settings is to first collect a dataset with good28

coverage over all possible scenarios in the environment, and then apply a “Batch-RL” algorithm. To29

methodically study this problem, we concentrate on the reward-free RL framework, which includes30

an exploration phase and a planning phase. In the exploration phase, the agent interacts with the31

environment without any pre-determined rewards and gathers empirical trajectories over episodes for32

the subsequent planning phase. During the planning phase, the agent uses the offline data accumulated33

in the exploration phase to compute the optimal policy for a given extrinsic reward function r, without34

further interactions with the environment.35
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The reward-free RL framework has been progressively examined under increasingly complex models36

—tabular → linear → kernel-based → deep learning based— in several works including (Jin et al.,37

2020a; Wang et al., 2020; Qiu et al., 2021). The existing literature adequately addresses the tabular38

and linear settings. It however tends to falter, providing only partial and incomplete results when39

dealing with the more intricate kernel-based and deep learning based settings. The contribution of40

this paper is to further the literature by providing order optimal results in the deep-learning-based41

setting.42

In this paper, we aim to develop an end-to-end instantiation of this proposal. To this end we ask:43

1. How can we efficiently integrate a reward-free RL framework with deep learning based settings,44

such as the DQNs algorithms? 2. How can agents efficiently explore the environment without explicit45

rewards?46

Our main objective is designing algorithms for both exploration and planning phases in the reward-47

free RL framework with deep-learning-based modeling. In particular, by exploring the environment,48

we aim to gather sufficient information so that we can compute the near-optimal policies for any49

reward function.50

Our Contributions. In this paper, we present the concept of intrinsic signals or self-certainty which51

characterize the sample complexity of achieving provably sufficient coverage for Batch-RL. We do52

so by adopting a “reward-free RL” paradigm using a graph MDP and representing every state with a53

weighted node: During an exploration phase, the agent collects trajectories from an MDP M without54

a pre-specified reward function but with intrinsic signals. Then, in the planning phase, it is tasked55

with computing near-optimal policies under the transitions of M for a large collection of given reward56

functions using the DQN algorithm.57

2 Related Work58

The reward-free RL framework under the episodic setting has been studied with tabular model in Jin59

et al. (2020a); Zhang et al. (2020); Menard et al.(2021); Kaufmann et al. (2021), and with linear60

model in Wang et al. (2020); Zanette et al. (2020c); Wagenmaker et al. (2022). The problem has also61

been studied under the linear mixture model in Zhang et al. (2021); Chen et al. (2021); Zhang et62

al. (2023). The sample complexity of the RL problem on a discounted MDP setting with an infinite63

horizon has been considered under various tabular, linear, and kernel-based settings in (Kearns Singh,64

1998; Azar et al., 2013; Sidford et al., 2018; Agarwal et al., 2020; Yang Wang, 2019; Yeh et al.,65

2023). These works however assume the existence of a generative oracle (Kakade, 2003), which66

provides sample transitions from any state-action pair of the algorithm’s choice. This assumption67

simplifies the problem compared to the reward-free RL framework considered in this work, where the68

agent must follow the MDP trajectory within each episode and cannot arbitrarily inquire transitions69

from state-action pairs.70

Specifically, we design an exploration algorithm based on intrinsic signals obtained from the agent71

itself that add significant challenges to the analysis. Our algorithm design is inspired by the RLIF72

technique used in Zhao et al (2025). In comparison, Zhao et al (2025) considered reasoning in73

LLMs where they replace external rewards in Group Relative Policy Optimization (GRPO) with74

self-certainty scores, enabling fully unsupervised learning. That is different from the reward-free RL75

framework considered in this work and their results do not apply here.76

There is extensive literature on the analysis of RL policies which does not rely on a generative model77

or an exploratory behavioral policy. The literature has primarily focused on the tabular setting (Jin et78

al., 2018; Auer et al., 2008; Bartlett Tewari, 2012). Recent literature has placed a notable emphasis79

on employing function approximation in RL, particularly within the context of generalized linear80

settings. This approach involves representing the value function or transition model through a linear81

transformation to a well-defined feature mapping. Important contributions include the work of Jin82

et al. (2020b); Yao et al. (2014), as well as subsequent studies by Russo (2019); Neu Pike-Burke83

(2020); Yang Wang (2020). Furthermore, there have been several efforts to extend these techniques84

to a kernelized setting, as explored in Yang et al. (2020a); Yang Wang (2020); Chowdhury Gopalan85

(2019); Yang et al. (2020b); Domingues et al. (2021).86
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3 Problem Formulation87

In this section, we present the episodic graph MDP setting, the reward-free RL framework, and88

background on DQNs method.89

3.1 Graph-based MDPs90

We assume that the full state x can be represented as a collection of state variables xi, so that X is a91

Cartesian product of the domains of the xi : X = X1X2XN , and similarly for d : D = D1D2DN .92

We consider the following particular factored form for MDPs: for each variable i, there exist93

neighborhood sets γi (including i) such that the value of Xt
i + 1 depends only on the variable i’s94

neighborhood, xt[γi], and the ith decision dti. Then, we can write the transition function in a factored95

form:96

T (y|x, d) =
N∏
i=1

Ti(yi|x[γi], di (1)

where each factor is a local-scope function Ti : X[γi]DiXi → [0, 1],∀i ∈ 1, 2, ..., N . We also97

assume that the reward function is the sum of N local-scope rewards:98

R(x, d) =

N∑
i=1

Ri(xi, di) (2)

with local-scope functions Ri : XiDißR,∀i ∈ 1, 2, ..., N . To summarize, a99

graph-based Markov decision process is characterized by the following parameters:100

(Xi : 1iN ;Di : 1iN ;Ri : 1iN ; γi : 1iN ;Ti : 1iN). These assumptions for graph-based MDPs can101

be easily generalized, for example to include Ti and Ri that depend on arbitrary sets of variables and102

decisions, using some additional notation.103

The optimal policy π(x) cannot be explicitly represented for large graph-based MDPs, since the104

number of states grows exponentially with the number of variables. To reduce complexity, we105

consider a particular class of local policies: a policy π(x) : X → D is said to be local if decision106

di is made using only the neighborhood γi, so that π(x) = (π1(x[γ1]), π2(x[γ2]), ..., πN (x[γN ]))107

where πi(x[γi]) : X[γi] → Di. The main advantage of local policies is that they can be concisely108

expressed when the neighborhood sizes |γi| are small.109

3.2 Reward-Free RL Framework110

We aim to learn E-optimal policies using as small as possible number of collected exploration episodes.111

In particular, we consider the reward-free RL framework that consists of two phases: exploration and112

planning. In the exploration phase, we collect N exploration episodes (sn1 , a
n
1 , s

n
2 , a

n
2 , , s

n
H)n=1N113

without any revealed reward function. Then, in the planning phase, reward r is revealed, and we114

design a policy for reward r using the trajectories collected in the exploration phase. We refer to N as115

the sample complexity of designing E-optimal policy. Under certain assumptions, the question is:116

How many exploration episodes are required to obtain E-optimal policies?117

3.3 Deep Q-Learning118

We are interested in maximizing the expected total reward in the episode, starting at step h, i.e., the119

value function, defined as120

V (s)πh = E[Σh′=hHr′h(s
′
h, a

′
h)|sh = s],∀s, h ∈ [H], (3)

where the expectation is taken with respect to the randomness in the trajectory (sh, ah)h=1H obtained121

by the policy π We also define the state-action value function Qhπ : Z → [0, H] as follows.122

Qπ
h(s, a) = Eπ[Σh′=hHr′h(s

′
h, a

′
h)|sh = s, ah = a] (4)

where the expectation is taken with respect to the randomness in the trajectory (sh, ah)h=1H obtained123

by the policy π. The Bellman equation associated with a policy π then is represented as124
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Qπ
h(s, a) = rh(s, a) + [PhV

π
h+1](s, a),125

V π
h (s) = maxQπ

h(s, a), V
π
H+1 = 0126

where the expectation is taken with respect to the randomness in the policy π.127

4 Algorithm128

The two main ideas in our design are (i) the use of a intrinsic signals in the exploration phase and (ii)129

DQN integration setting in application of deep-learning-based confidence intervals.130

Intrinsic Rewards. In the exploration phase, Instead of depending on external evaluation, IR uses131

the model’s own assessment of its outputs or reasoning process as feedback. This offers several132

advantages: it reduces reliance on supervision infrastructure, provides task-agnostic reward signals,133

and supports learning in domains where external verification is unavailable, where u(q, o) represents134

an intrinsic signal derived from the model’s internal state or computation, rather than external135

verification. The key challenge lies in identifying intrinsic signals that correlate with output quality136

and can effectively guide learning.137

4.1 Exploration Phase138

Algorithm 1 Exploration Phase
Input: τ , β(δ), K, S, A, H , P

for n = 1, 2, . . . do
for step = H, 1 . . . do

Obtain Qhn
V n
h (.) = maxaQh(., a)

end for
for h = 1, 2, . . . do

Take action anh ← maxaQ
n
h(s

n
h, a)

Receive the next state snh+1
end for

end for

4.2 Planning Phase139

Algorithm 2 Exploration Phase
Input: τ , β(δ), K, S, A, H , P and exploration data (snh, a

n
h)(h,n) ∈ [H][N ]

for all(s; a; s0;h) ∈ SAS[H] do
P̂h(s

′|s, a) =Nh(s, a, s
′)/Nh(s, a)

end for
π ← APPROXIMATE-MDP-SOLVER(P̂ ; r; e)
ReturnPolicyπ̂

5 Conclusion140

In this paper, We considered the reward-free RL framework with deep-learning-based modeling,141

comprising of two phases. In the exploration phase, the learner first collects trajectories from an MDP142

M without receiving any reward information. After the exploration phase, the learner is no longer143

allowed to interact with the MDP and she is instead tasked with computing near-optimal policies144

under for M for a collection of given reward functions. This framework is particularly suitable when145

there are many reward functions of interest, or when we are interested in learning the transition146

operator directly. Finally, we developed algorithms for both exploration and planning phases for with147

function approximation using deep learning.148
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